通过同时对已知类别进行分类并识别未知类别,将图像分类扩展到开放世界设置。尽管常规的OSR方法可以检测到分布(OOD)样本,但它们无法提供说明,表明哪些基本视觉属性(例如,形状,颜色或背景)导致特定样本未知。在这项工作中,我们介绍了一个新的问题设置,该设置将常规OSR推广到一个多属性设置,其中同时识别了多个视觉属性。在这里,不仅可以识别OOD样本,而且可以按其未知属性进行分类。我们提出了简单的常见OSR基线的扩展,以处理这种新颖的情况。我们表明,当培训数据集中存在虚假相关性时,这些基准很容易受到捷径。这导致了OOD性能差,根据我们的实验,这主要是由于预测的置信度得分的意外交叉分类相关性。我们提供了一个经验证据,表明这种行为在合成和现实世界数据集的不同基准之间是一致的。
translated by 谷歌翻译
当深层神经网络过于依赖培训数据集中的虚假相关性以解决下游任务时,就会发生快捷学习。先前的工作表明,这如何损害深度学习模型的组成概括能力。为了解决这个问题,我们提出了一种新的方法来减轻不受控制的目标域中的快捷方式学习。我们的方法使用附加的数据集(源域)扩展了训练集,该数据集(源域)是专门设计的,旨在促进学习基本视觉因素的独立表示。我们基于我们明确控制快捷机会以及现实世界目标域的合成目标域的想法。此外,我们分析了源域的不同规格和网络体系结构对组成概括的影响。我们的主要发现是,从源域中利用数据是减轻快捷方式学习的有效方法。通过促进学习表示的不同因素的独立性,网络可以学会仅考虑预测因素,并忽略推断期间潜在的快捷因素。
translated by 谷歌翻译
The application of deep learning algorithms to financial data is difficult due to heavy non-stationarities which can lead to over-fitted models that underperform under regime changes. Using the Numerai tournament data set as a motivating example, we propose a machine learning pipeline for trading market-neutral stock portfolios based on tabular data which is robust under changes in market conditions. We evaluate various machine-learning models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks with and without simple feature engineering, as the building blocks for the pipeline. We find that GBDT models with dropout display high performance, robustness and generalisability with relatively low complexity and reduced computational cost. We then show that online learning techniques can be used in post-prediction processing to enhance the results. In particular, dynamic feature neutralisation, an efficient procedure that requires no retraining of models and can be applied post-prediction to any machine learning model, improves robustness by reducing drawdown in volatile market conditions. Furthermore, we demonstrate that the creation of model ensembles through dynamic model selection based on recent model performance leads to improved performance over baseline by improving the Sharpe and Calmar ratios. We also evaluate the robustness of our pipeline across different data splits and random seeds with good reproducibility of results.
translated by 谷歌翻译
Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring. DPMs are trained via a stochastic denoising process that maps Gaussian noise to the high-quality image, conditioned on the concatenated blurry input. Despite their high-quality generated samples, image-conditioned Diffusion Probabilistic Models (icDPM) rely on synthetic pairwise training data (in-domain), with potentially unclear robustness towards real-world unseen images (out-of-domain). In this work, we investigate the generalization ability of icDPMs in deblurring, and propose a simple but effective guidance to significantly alleviate artifacts, and improve the out-of-distribution performance. Particularly, we propose to first extract a multiscale domain-generalizable representation from the input image that removes domain-specific information while preserving the underlying image structure. The representation is then added into the feature maps of the conditional diffusion model as an extra guidance that helps improving the generalization. To benchmark, we focus on out-of-distribution performance by applying a single-dataset trained model to three external and diverse test sets. The effectiveness of the proposed formulation is demonstrated by improvements over the standard icDPM, as well as state-of-the-art performance on perceptual quality and competitive distortion metrics compared to existing methods.
translated by 谷歌翻译
Federated Learning (FL) is extensively used to train AI/ML models in distributed and privacy-preserving settings. Participant edge devices in FL systems typically contain non-independent and identically distributed~(Non-IID) private data and unevenly distributed computational resources. Preserving user data privacy while optimizing AI/ML models in a heterogeneous federated network requires us to address data heterogeneity and system/resource heterogeneity. Hence, we propose \underline{R}esource-\underline{a}ware \underline{F}ederated \underline{L}earning~(RaFL) to address these challenges. RaFL allocates resource-aware models to edge devices using Neural Architecture Search~(NAS) and allows heterogeneous model architecture deployment by knowledge extraction and fusion. Integrating NAS into FL enables on-demand customized model deployment for resource-diverse edge devices. Furthermore, we propose a multi-model architecture fusion scheme allowing the aggregation of the distributed learning results. Results demonstrate RaFL's superior resource efficiency compared to SoTA.
translated by 谷歌翻译
In peer review systems, reviewers are often asked to evaluate various features of submissions, such as technical quality or novelty. A score is given to each of the predefined features and based on these the reviewer has to provide an overall quantitative recommendation. However, reviewers differ in how much they value different features. It may be assumed that each reviewer has her own mapping from a set of criteria scores (score vectors) to a recommendation, and that different reviewers have different mappings in mind. Recently, Noothigattu, Shah and Procaccia introduced a novel framework for obtaining an aggregated mapping by means of Empirical Risk Minimization based on $L(p,q)$ loss functions, and studied its axiomatic properties in the sense of social choice theory. We provide a body of new results about this framework. On the one hand we study a trade-off between strategy-proofness and the ability of the method to properly capture agreements of the majority of reviewers. On the other hand, we show that dropping a certain unrealistic assumption makes the previously reported results to be no longer valid. Moreover, in the general case, strategy-proofness fails dramatically in the sense that a reviewer is able to make significant changes to the solution in her favor by arbitrarily small changes to their true beliefs. In particular, no approximate version of strategy-proofness is possible in this general setting since the method is not even continuous w.r.t. the data. Finally we propose a modified aggregation algorithm which is continuous and show that it has good axiomatic properties.
translated by 谷歌翻译
Robust 2004是一种信息检索基准,其每个查询的大量判断使其成为可靠的评估数据集。在本文中,我们介绍了Mrobust04,这是一种多语言版本的robust04,使用Google Translate翻译为8种语言。我们还提供了该数据集上三个不同多语言检索器的结果。该数据集可在https://huggingface.co/datasets/unicamp-dl/mrobust上获得
translated by 谷歌翻译
估计空间变化的干预对空间变化结果的因果影响可能会受到非本地混杂(NLC)的影响,这种现象可能会估计给定单位的处理和结果部分由协方差估计。附近的其他单元。特别是,NLC是评估环境政策和气候事件对健康相关结果(例如空气污染暴露)的影响的挑战。本文首先使用潜在结果框架对NLC进行正式化,从而与因果干扰的相关现象进行了比较。然后,它提出了一个称为“ weather2vec”的广泛适用框架,该框架使用平衡分数理论来学习非本地信息的表示形式,以定义为每个观察单元定义的标量或向量使用因果推理方法。该框架在一项仿真研究和两项关于空气污染的案例研究中进行了评估,天气是(本质上是区域)已知的混杂因素。
translated by 谷歌翻译
神经架构搜索(NAS)在神经网络(NN)的设计和部署方面具有显着提高的生产率。由于NAS通常通过部分或完全训练多个模型来评估多个模型,因此提高的生产率是以大量碳足迹为代价的。为了减轻这种昂贵的训练例程,零击/成本代理在初始化时分析了NN以产生分数,这与其真正的准确性高度相关。零成本代理目前是由专家设计的,这些专家对可能的算法,数据集和神经体系结构设计空间进行了多个经验测试。这降低了生产率,并且是对零成本代理设计的一种不可持续的方法,因为深度学习用例本质上多样化。此外,现有的零成本代理无法跨越神经体系结构设计空间。在本文中,我们提出了一个基因编程框架,以自动化发现零成本代理以进行神经体系结构评分。我们的方法有效地发现了一个可解释且可推广的零成本代理,该代理在NASBENCH-2010和网络设计空间(NDS)的所有数据集和搜索空间上提供了最高得分 - 准确性的相关性。我们认为,这项研究表明了自动发现可以跨网络体系结构设计空间,数据集和任务的零成本代理的有希望的方向。
translated by 谷歌翻译
我们定义了更广泛的腐败过程,该过程概括了先前已知的扩散模型。为了扭转这些一般的扩散,我们提出了一个称为“软得分匹配”的新目标,可以证明可以学习任何线性腐败过程的得分功能,并为Celeba提供最先进的结果。软得分匹配结合了网络中的降解过程,并训练模型以预测腐败与扩散观察相匹配的干净图像。我们表明,我们的目标在适当的规律性条件下为腐败过程的家庭学习了可能性的梯度。我们进一步开发了一种原则性的方法,以选择一般扩散过程的损坏水平和一种我们称为动量采样器的新型抽样方法。我们评估了我们的框架,腐败是高斯模糊和低幅度添加噪声。我们的方法在Celeba-64上获得了最先进的FID得分$ 1.85 $,表现优于所有以前的线性扩散模型。与香草deno的扩散相比,我们还显示出显着的计算益处。
translated by 谷歌翻译